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Abstract

We propose a new approach to quantize the marginals of the discrete Euler process resulting from the
discretization of a brownian diffusion process using the Euler scheme. The method is built recursively
using the distribution of the marginals of the discrete Euler process. The quantization error associated to
the marginals is shown to goes toward 0 at the optimal rate associated to the quantization of an Rd-valued
random vector. In the one dimensional setting we illustrate how to perform the optimal grids using the
Newton algorithm and show how to estimate the associated weights from a recursive formula. Numerical
tests are carried out for the pricing of European options in a local volatility model and a comparison
with the Monte Carlo simulations shows that the proposed method is more efficient than the Monte Carlo
method.

1 Introduction

Optimal quantization method appears first in [20] where the author studies in particular the optimal quanti-
zation problem for the uniform distribution. It has become an important field of information theory since the
early 1940’s. A common use of quantization is the conversion of a continuous signal into a discrete signal
that assumes only a finite number of values.

Since then, optimal quantization is applied in many fields as in Physics, in Computer Sciences, . . . ,
and recently in Numerical Probability from the seminal work [12]. Its application to Numerical Probability
relies on the possibility to resume a random vector taking values in a set of infinite cardinality by a discrete
random vector valued in a set of finite cardinality with the associated weights. This allows to approximate
either expectations or more significantly some conditional expectations. This is the key property used to
solve some problems arising in Quantitative Finance as optimal stopping problems (see [1, 2]), the pricing
of swing options (see [3]), stochastic control problems (see [6, 14]), nonlinear filtering problems (see e.g.
[13, 17, 5, 18]), the pricing of barrier options (see [19]).

In Quantitative Finance, several problems of interest are the estimation of quantities like (for a given
function f : Rd 7→ R)

E
[
f(XT )

]
, T > 0, (1)

or involving terms like
E
[
f(Xt)|Xs = x

]
, 0 < s < t, (2)

where (Xt)t∈[0,T ] is a stochastic process which evolves following the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0 ∈ Rd, (3)

where W is a standard d-dimensional Brownian motion starting at 0 and where the functions b : [0, T ] ×
Rd 7→ Rd and the matrix diffusion coefficient function σ : [0, T ]×Rd 7→ Rd×Rd are measurable and satisfy
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some appropriate conditions which ensure the existence of a strong solution of the stochastic differential
equation. Since in general the solution of (3) is not explicit we have first to approximate the continuous
paths of the process (Xt)t∈[0,T ] by discrete paths using some discretization scheme like the Euler scheme.
Given the (regular) time discretization steps tk = k∆, k = 0, . . . , n, ∆ = T/n, the "discrete Euler process"
(X̃tk)k, k = 0, . . . , n, associated to the previous diffusion process (Xt)t∈[0,T ] is defined recursively as

X̃tk+1
= X̃tk + b(tk, X̃tk)∆ + σ(tk, X̃tk)(Wtk+1

−Wtk), X̃0 = X0.

Then, once we have access to the discrete paths of the stochastic process (Xt)t∈[0,T ], the quantities (1) and
(2) are estimated by

E
[
f(X̃tn)

]
(4)

and
E
[
f(X̃tk+1

)|X̃tk = x
]
, tk+1 = t, tk = s. (5)

Remark 1.1. a) Under some assumptions on f (for e.g. if f is four times continuously differentiable with
polynomial growth) the estimation of E(f(XT ) by E(f(X̃T )) induces the following weak error convergence:

|Ef(XT )− Ef(X̃T )| ≤ C

n

with C > 0 and where n is the number of time discretization steps.
b) Also remark that for every p ≥ 1,

E
(

sup
k=0,...,n

|X̃tk |
p
)
< +∞. (6)

The estimation of quantities like (4) or (5) can be performed using Monte Carlo simulations. Neverthe-
less, an alternative to the Monte Carlo method may be the optimal quantization method, specially in small
dimension (d ≤ 4 in the theory but in practice it may stay competitive with respect to the Monte Carlo
method up to dimension d = 10, see [16]).

In fact, suppose that we have access to the optimal quantization or to some “good” (in a sense to be
specified later) quantizations (X̃xNk

tk
)k of the process (X̃tk)k on the grids xNk = {xNk1 , . . . , xNkNk} of size

Nk, for k = 0, . . . , n. Suppose also that we can get the associated weights P(X̂xNk
tk

= xNki ), i = 1, . . . , Nk,

k = 0, . . . , n, and the transition probabilities p̂jk(x) = P(X̂xNk+1

tk+1
= x

Nk+1

j |X̂xNk
tk

= x) for every k =
0, . . . , n−1. Then using optimal quantization method, the expressions (4) and (5) are estimated respectively
by

E
[
f(X̂xNn

tn )
]

=

Nn∑
i=1

f(xNni )P
(
X̂xNn
tn = xNni

)
and

E
[
f(X̂xNk+1

tk+1
)|X̂xNk

tk
= x

]
=

Nk+1∑
j=1

f(x
Nk+1

j ) p̂jk(x).

The question is then to know how to get the optimal grids xNk , for k = 0, . . . , n, the associated weights
and transition probabilities. In a more general framework, as soon as the stochastic process (X̃tk)k (or the
underlying diffusion process (Xt)t≥0) can be simulated one may use stochastic (or Lloyd) algorithms to
estimate the (optimal) grids and the associated weights or transition probabilities. In the special case of the
one dimensional setting we can use the Newton algorithm in some situations. This deterministic algorithm
leads to more precise estimations and is more fast (at far in some cases) than stochastic algorithms.

Consider the first quantity (4), given that the second one is of interest in a working paper. Suppose for
example that we aim to estimate the price of a Put option with a maturity T , a strike K, an interest rate r and
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a given present value X0 in the Black-Scholes model where the dynamics of the stock price process under
the risk neutral probability is given by:

dXt = rXtdt+ σXtdWt, X0 = x0 ∈ R,

which solution reads

Xt = X0 e
(r−σ2/2)t+σWt L= X0 e

(r−σ2/2)t+σ
√
tZ , Z ∼ N (0; 1).

Then we want to estimate the quantity (keep in mind that this is a toy example given that it can be written in
a semi-closed formula involving the cumulative distribution function of the standard Gaussian distribution:
the famous Black-Scholes formula)

e−rTE(f(XT )),

where the payoff function f(x) = max(K − x, 0). To estimate such an expression by optimal quantization,
one may quantize the random variable Z and compute the associated weights using the Newton algorithm.
Then, setting Ẑx

N
its optimal quantization on the grid xN = {xN1 , . . . , xNN} we estimate the quantity of

interest by

e−rT
N∑
i=1

f(g(xNi ))P(Ẑx
N

= xNi )

where g : x 7→ X0 e
(r−σ2/2)T+σ

√
Tx (see e.g. [12]). Now, suppose that the model is a local volatility model

where the dynamics of the stock price process evolves following the stochastic differential equation (called
Pseudo-CEV in [10]):

dXt = rXtdt+ ϑ
Xδ+1
t√

1 +X2
t

dWt, X0 = x0 (7)

for some δ ∈ (0, 1) and ϑ ∈ (0, ϑ] with ϑ > 0, where r is the interest rate. In this situation the distribution
of XT is not known and if we want to estimate the quantity of interest: e−rTE(f(XT ), where f(x) :=
max(K − x, 0) is the payoff function, we have to discretize the process (Xt)t≥0 as (X̃tk)k=0,...,n, with
tn = T , using for e.g. the Euler scheme, then, estimate

e−rTE(f(X̃T ))

by optimal quantization. Up to now, the only way to get the optimal grids and the associated weights in this
situation is carrying out stochastic algorithms (see e.g. [16]) or Lloyd’s algorithms (see e.g. [8]), even in the
one dimensional framework. As pointed out previously this method may be very time consuming.

In this paper we propose a new approach to quantize the process (X̃tk)k, based on a recursive method
involving the conditional distribution of the marginals: means, those of X̃tk+1

|X̃tk . This approach raises
some interesting problems among with the computation of the rate of convergence of the quantization error
associated to X̃tk (for k = 0, . . . , n), the question of knowing if the defined quantization X̂xNk

tk
of X̃tk on

the grid xNk satisfy the stationary property, . . .
We observe that by construction these marginal quantizations are stationary. This property is very useful

when estimating expressions like (4) and (5) by optimal quantization. We also observe that the rate of
convergence of the quantization error associated to the marginal X̃tk is of O(N−1

k ), where Nk is the level
of the quantization. As a consequence of this result, if f is a Lipschitz function then estimating Ef(X̃T ) by
Ef(X̂Nn

T ) where X̂Nn
T is the optimal quantization of X̃T of size Nn will induce the following error bound:

|Ef(X̃T )− Ef(X̂Nn
T )| = O(N−1

n ).

On the other hand, if k ∈ {0, . . . , n − 1}, we show that one may rely the L2-quantization error E|X̃tk+1
−

X̂xNk+1

tk+1
|2 associated to X̃tk+1

with the distribution of X̃tk as

E|X̃tk+1
− X̂xNk+1

tk+1
|2 =

∫
Rd

E
(

min
j=1,...,Nk+1

∣∣Yk(x)− xNk+1

j

∣∣r)P(X̃tk ∈ dx) (8)
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where Yk(x) is the d-dimensional gaussian distribution with known mean and variance. Thus, in practice, to
quantize the random variable X̃tk+1

we have to compute an expectation with respect to X̃tk . The distribution
of X̃tk is not explicit but since the random variable X̃tk is supposed to be already quantized we will estimate
(8) by

Nk∑
i=1

E
(

min
j=1,...,Nk+1

∣∣Yk(xNki )− xNk+1

j

∣∣2)P(X̂xNk
tk

= xNki ) (9)

where X̂xNk
tk

is the quantization of X̃tk on the grid xNk . We show that the error induced by such an estimation
is bounded by the quantization error ‖Xtk − X̂xNk

tk
‖2.

From the numerical viewpoint our method allows us to estimate efficiently, as well from the precision
of the estimates as from the computational time, expressions like (4). In fact, in the specific case of the
one dimensional setting, this approach allows us to use the Newton algorithm as an alternative to stochastic
algorithms. This is a very important fact because it is more precise and more fast than stochastic algorithms.
Notice however that when dealing with high dimension (d ≥ 2) there is at the moment no way to avoid the
use of stochastic (or Lloyd) like algorithms.

The paper is organized as follows. We recall first some basic facts about optimal quantization. The
marginal quantization method is described in Section 3. We give in this section the induced quantization
error and compute the error bound derived from the estimation of (8) by (9). We also illustrate how to get the
optimal grids using Newton’s algorithm and show how to estimate the associated weights. The last section,
Section 4, is devoted to the application of the proposed method to the pricing of an European Put option in
a local volatility model (as well as in the Black-Scholes model) and to the comparison with the Monte Carlo
method.

2 Overview on optimal quantization methods

Let (Ω,A,P) be a probability space and let X : (Ω,A,P) −→ Rd be a random variable with distribution
PX . The Lr(PX)-optimal quantization problem of size N for the random vector X (or for the distribution
PX ) consists in finding the best approximation of X by a Borel function of X taking at most N values.
Assuming that X ∈ Lr(P), we associated to every Borel function q(X) taking at most N values the Lr-
error ‖X − q(X)‖r measuring the distance between the two random vectors X and q(X) w.r.t. the Lr-
norm, where ‖X‖r := (E|X|r)1/r and where | · | denotes an arbitrary norm on Rd. Then finding the best
approximation of X by a Borel function of X taking at most N values turns out to find the solution of the
following minimization problem:

eN,r(X) = inf {‖X − q(X)‖r, q : Rd → xN , xN ⊂ Rd, card(xN ) ≤ N}.

Now, let xN = {xN1 , . . . , xNN} ⊂ Rd be a subset (a codebook) of size N (it is also called an N -quantizer
or a grid of size N ) and define a Voronoi partition Ci(xN )i=1,...,N of Rd, which is a Borel partition of Rd
satisfying for every i ∈ {1, . . . , N},

Ci(x
N ) ⊂ {x ∈ Rd : |x− xNi | = min

j=1,...,N
|x− xNj |}.

Consider the Voronoi quantization ofX (or simply called quantization ofX) on theN -quantizer xN defined
by

X̂xN =

N∑
i=1

xNi 1{X∈Ci(xN )}.

Then for any Borel function q : Rd → xN = {xN1 , . . . , xNN} we have

|X − q(X)| ≥ min
i=1,...,N

d(X,xNi ) = d(X,xN ) = |X − X̂xN | P a.s
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so that the optimal quantization error eN,r(X) reads

eN,r(X) = inf {‖X − X̂xN ‖r, xN ⊂ Rd, card(xN ) ≤ N}

= inf
xN⊂Rd

card(xN )≤N

(∫
Rd
d(z, xN )rdPX(z)

)1/r

. (10)

Note that for every N ≥ 1, the infimum in (10) is reached at one codebook at least. Any N -quantizer
realizing this infimum is called an Lr-optimal N -quantizer. Morever, if card(supp(PX)) ≥ N then the
optimalN -quantizer is of size exactlyN (see [9] or [12]). On the other hand, the quantization error, eN,r(X),
decreases to zero as the grid sizeN goes to infinity and its rate of convergence is ruled by the so-called Zador
Theorem given below.

Theorem 2.1. (Zador Theorem, see [9]) : Let X be an Rd-valued random vector such that E|X|r+η <
+∞ for some η > 0 and let PX = Pa + Ps be the Lebesgue decomposition of PX with respect to the
Lebesgue measure λd, where Pa denotes the absolutely continuous part and Ps the singular part. Then

lim
N→+∞

N r/d(eN,r(P ))r = Qr(PX) (11)

with

Qr(PX) = Jr,d

(∫
Rd
f

d
d+r dλd

) d+r
d

= Jr,d ‖f‖ d
d+r
∈ [0,+∞),

Jr,d = inf
N≥1

N r/derN,r(U([0, 1]d)) ∈ (0,+∞),

where U([0, 1]d) denotes the uniform distribution on the set [0, 1]d and f = dPa
dλd

.

We will call Qr(PX) the Zador’s constant associated to X . From the Numerical Probability point of
view, finding an optimal N -quantizer xN may be a challenging task. In practice (we will only consider the
quadratic case, i.e. when r = 2 for numerical implementations) we are sometimes led to find some “good”
quantizations X̂xN which are close to X in distribution, so that for every Borel function f : Rd 7→ R, we
can approximate E[f(X)] by

Ef
(
X̂xN

)
=

N∑
i=1

f(xNi ) pi, (12)

where pi = P(X̂xN = xNi ). Among “good” quantizations of X we have stationary quantizers defined as
follows.

Definition 2.1. AnN -quantizer xN = {xN1 , . . . , xNN} inducing the quantization X̂xN ofX is said stationary
if

∀ i 6= j, xi 6= xj and P
(
X ∈ ∪i∂Ci(xN )

)
= 0

and
E
[
X|X̂xN

]
= X̂xN . (13)

Defining the distortion function by

DN,2(xN ) =

∫
Rd
d(z, xN )2dPX(z) =

N∑
i=1

∫
Ci(xN )

|z − xNi |2dPX(z), (14)

a stationary quantizer xN = {xN1 , . . . , xNN} is in fact an N -quantizer satisfying the stationary equality:
∇DN,2(xN ) = 0. The following result justify the introversion of the differentiation and the integral leading
to (13) when differentiating (14), see [9].
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Proposition 2.2. The function DN,2 is differentiable at any N -tuple xN ∈ (Rd)N having pairwise distinct
components and satisfying

P
(
X ∈ ∪i∂Ci(xN )

)
= 0

(which condition holds in particular when X is a continuous random vector) and we have

∇DN,2(xN ) =
(

2

∫
Ci(xN )

(xNi − z)dPX(z)
)
i=1,...,N

. (15)

For numerical implementations, the stationary quantizers search is based on zero search recursive pro-
cedures like Newton’s algorithm in the one dimensional framework and some algorithms as Lloyd’s I al-
gorithms (see e.g. [8]), the Competitive Learning Vector Quantization (CLVQ) algorithm (see [8]) or
stochastic algorithms (see [15]) in the multidimensional framework. One may download optimal quan-
tizers associated to some random variables as the multivariate Gaussian random vector in the website
www.quantize.math-fi.com.

When estimating the expectation Ef(X) by Ef(X̂xN ) where xN is an N -quantizer and X̂xN the quan-
tization of X on xN , we make an error which may be bounded by the quantization error E|X − X̂xN |2,
depending to the regularity of the function f . We next recall some error bounds induced from the approxi-
mation of Ef(X) by (12), we refer to [16]) for further details.

a) Let xN be a stationary quantizer and f be a Borel function on Rd. If f is a convex function then

Ef(X̂xN ) ≤ Ef(X). (16)

b) Lipschitz functions:

– If f is Lipschitz continuous then for any N -quantizer xN we have∣∣Ef(X)− Ef(X̂xN )
∣∣ ≤ [f ]Lip‖X − X̂xN ‖2,

where

[f ]Lip := sup
x 6=y

|f(x)− f(y)|
|x− y|

.

– Let θ : Rd → R+ be a nonnegative convex function such that θ(X) ∈ L2(P). If f is locally
Lipschitz with at most θ-growth, i.e. |f(x)− f(y)| ≤ [f ]Lip|x− y|(θ(x) + θ(y)) then f(X) ∈
L1(P) and ∣∣Ef(X)− Ef(X̂xN )

∣∣ ≤ 2[f ]Lip‖X − X̂xN ‖2‖θ(X)‖2.

c) Differentiable functionals: if f is differentiable on Rd with an α-Hölder differential Df (α ∈ [0, 1]),
then for any stationary N -quantizer xN ,∣∣Ef(X)− Ef(X̂xN )

∣∣ ≤ [Df ]α‖X − X̂xN ‖1+α
2 .

3 Marginal quantization of a discrete stochastic diffusion process

Let (Xt)t≥0 be a stochastic process taking values in d-dimensional Euclidean space Rd and evolving follow-
ing the stochastic differential equation:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0 ∈ Rd, (17)
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where W is a standard d-dimensional Brownian motion starting at 0 and where the functions b : [0, T ] ×
Rd 7→ Rd and the matrix diffusion coefficient function σ : [0, T ] × Rd 7→ Rd × Rd are measurable and
satisfy the global Lipschitz and linear growth conditions:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y| (18)

|b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|). (19)

This guaranties the existence of a strong solution of (17). We also suppose that the matrix σ is positive
definite. In the rest of the paper we will suppose that Rd is equipped with the Euclidean norm.

Let tk = k∆, k = 0, 1, . . . , n be time discretization steps, with ∆ > 0. Consider the Euler scheme of
the process (Xt)t≥0 starting from X0 = x0:

X̃tk+1
= X̃tk + b(tk, X̃tk)∆ + σ(tk, X̃tk)(Wtk+1

−Wtk).

Define the functions mk and Σk by

mk(x) = x+ ∆b(tk, x) and Σk(x) = ∆σ(tk, x)σ(tk, x)T .

It is clear that
X̃tk+1

|X̃tk = x ∼ N
(
mk(x); Σk(x)

)
and will denote by Φmk(x),Σk(x)(·) its density and by Γmk(x),Σk(x)(·) its cumulative distribution function:

Φmk(x),Σk(x)(xk+1) =
1

(2π)d/2|Σk(x)|1/2
exp

(
− 1

2

(
xk+1 −mk(x)

)T
Σ−1
k

(
xk+1 −mk(x)

))
where |Σk(x)| denote the determinant of Σk(x) and for xk+1 ∈ Rd,

Γmk(x),Σk(x)(xk+1) =

∫
]−∞,xk+1]

Φmk(x),Σk(x)(y)dy.

For every n ≥ 0, we will denote by Px(X̃tn ∈ dxn) the density of Xtn when starting the process at
X0 = x.

3.1 Distortion function of the marginals

To compute the distortion function of the marginals of the Euler diffusion process we need to know the
probability distribution of the marginals. We recall how to compute the distribution of the marginal X̃tk+1

with respect to the distribution of X̃tk .
Using Fubini’s theorem we have

P(X̃tk+1
≤ xk+1) =

∫
]−∞,xk+1]

∫
Rd

P(X̃tk+1
∈ dy|X̃tk = xk)P(X̃tk ∈ dxk)

=

∫
Rd

Γmk(xk),Σk(xk)(xk+1)P(X̃tk ∈ dxk).

Then

P(X̃tk+1
∈ dxk+1) = dxk+1 E

[
Φmk(X̃tk ),Σk(X̃tk )(xk+1)

]
(20)

= dxk+1

∫
Rd

Φmk(xk),Σk(xk)(xk+1)P(X̃tk ∈ dxk) (21)

= dxk+1

∫
Rd
. . .

∫
Rd

k∏
i=0

Φmi(xi),Σi(xi)(xi+1)µ(dx0)dx1 . . . dxk (22)
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It follows from Equation (21) that the probability density function of the Euler diffusion process may be
computed recursively if the distribution of X0 (supposing that X0 is random) is known.

On the other hand this result allows us to compute the (quadratic) quantization error of the marginal
distribution X̃tk+1

given the distribution of X̃tk and then to deduce from a recursive procedure the optimal
quantization of X̃tk+1

given the distribution of X̃tk (or, from the numerical point of view, given the optimal
quantization of X̃tk and its associated weights). In fact, let X̂xN0

0 be the quadratic optimal quantization of
X0 over the optimal grid xN0 = {xN0

1 , . . . , xN0
N0
} (if X0 = x is not random we set N0 = 1 and X̂xN0

0 =

x). We will deduce the quantization of the marginal random variable X̃t1 using Equation (21). Once this
quantization is perform we will get from the same way the quantization of X̃t2 given the distribution of X̃t1 ,
and so on. In the general setting suppose that the quadratic optimal quantizations X̂xNl

tl
, l = 0, . . . , k, of the

X̃tl’s over the optimal Nl-quantizers xNl = {xNl1 , . . . , xNlNl} are given. We propose in the following, a way
to deduce the quadratic optimal quantization of X̃tk+1

.
Let k ∈ {0, . . . , n−1} and let Dk+1(xNk+1) be the distortion function associated to the Nk+1-quantizer

xNk+1 = {xNk+1

1 , . . . , x
Nk+1

Nk+1
}. Then it follows from (21) that

Dk+1(xNk+1) =

Nk+1∑
j=1

∫
Cj(x

Nk+1 )

(
x
Nk+1

j − z
)2P(X̃tk+1

∈ dz)

=

∫
Rd

(Nk+1∑
j=1

∫
Cj(x

Nk+1 )

(
x
Nk+1

j − z
)2

Φmk(x),Σk(x)(z)dz
)
P(X̃tk ∈ dx),

so that we have the following result.

Proposition 3.1. We have

Dk+1(xNk+1) =

∫
Rd

E
(

min
j=1,...,Nk+1

∣∣Yk(x)− xNk+1

j

∣∣2)P(X̃tk ∈ dx), (23)

where Yk(x) is the d-dimensional gaussian distribution with mean mk(x) and variance Σk(x).

Keep in mind that the Lr-quantization error for the marginal random variable X̃tk+1
is defined as

eNk+1,r(X̃tk+1
) = inf

{∥∥X̃tk+1
− X̂xNk+1

tk+1

∥∥
r
, xNk+1 ⊂ Rd, card(xNk+1) ≤ Nk+1

}
.

A natural question arising after our constructive approach is to compute the rate of convergence of the
quantization error associated to the marginals.

3.2 Error analysis

We observe that for every time step tk, the quantization error goes to 0 at the optimal rate N−1/d
k where Nk

is the grid size of the optimal Nk-quantizer xNk = {xNk1 , . . . , xNkNk}. In fact, it follows from Equation (22)
that X̃tk admits a density function for every k =, 1, . . . , n. Furthermore, we deduce from (6) that for every
r ≥ 1 and for every k = 1, . . . , n, E|X̃tk |r < +∞. Then Zador’s theorem applies and we have for every
k = 1, . . . , n, for any Lr-optimal quantizer xNk for Xtk ,

lim
Nk→+∞

N
r/d
k erNk,r(X̃tk) = Qr

(
PX̃tk

)
(24)

where erNk,r(X̃tk) := E
(
|X̃tk − X̂xNk

tk
|r
)

is the quantization error associated to the Lr-optimal quantizer
xNk and Qr

(
PX̃tk

)
is the Zador constant associated to the distribution of X̃tk .
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As mentioning before, the computation of the quadratic optimal quantizers for X̃tk+1
suppose that we

have access to the distribution of X̃tk . In practice, since we suppose that X̃tk has already be quantized and
that we have access to its associated weights, we will estimate the distortion function Dk+1 associated to
X̃tk+1

and given in (23) by

D̂k+1(xNk+1) =

Nk∑
i=1

E
(

min
j=1,...,Nk+1

∣∣Yk(xNki )− xNk+1

j

∣∣2)P(X̂xNk
tk

= xNki ). (25)

We give in the following an error bound induced by such an approximation.

Theorem 3.2. Suppose that there is is a non null polynomial function Pα(a, b) of degree α ∈ N of the form

Pα(a, b) =
∑
i,j≤α

cija
ibj , ci,j ≥ 0, i, j ∈ N (26)

such that for every x, z ∈ Rd,

sup
t∈[0,T ]

|σσT (t, x)− σσT (t, z)| ≤ |x− z|Pα(|x|, |z|). (27)

Let n ≥ 1. Then, for any sequence of stationary Nk-quantizer xNk for X̃tk s.t. for every k = 0, . . . , n,∥∥X̃tk − X̂
xNk
tk

∥∥ −→ 0, as Nk → +∞

we have ∣∣Dk+1(xNk+1)− D̂k+1(xNk+1)
∣∣ ≤ K ∥∥X̃tk − X̂

xNk
tk

∥∥
2
, for k = 1, . . . , n− 1. (28)

for some real constant K > 0.

Before dealing with the proof of the theorem let us make some remarks on Assumption (26).

Remark 3.1. Note that Assumption (26) is satisfied when σσT is uniformly Lipschitz in space, uniformly
in time: there is L > 0 s.t.

sup
t∈[0,T ],(x,z)∈R2d,x 6=z

|σσT (t, x)− σσT (t, z)|
|x− z|

≤ L.

We also note that if σ is symmetric then Assumption (26) holds with P1(a, b) = K2(2 + a+ b), where K is
the constant appearing in (18) and (19). In fact, if σ is symmetric then

|σσT (t, x)− σσT (t, z)| = |σ2(t, x)− σ2(t, z)|
≤ |σ(t, x)− σ(t, z)|

(
|σ(t, x)|+ |σ(t, z)|

)
≤ K2|x− z|(2 + |x|+ |z|),

where the first inequality follows from the Hölder and Minkowski inequalities and the last inequality from
(18) and (19). As a consequence, Assumption (26) is satisfied by a large class of model in the one dimen-
sional framework, including the Black-Scholes model and the Pseudo-CEV model.

Let us prove the theorem now.

Proof. We have

|Dk+1(xNk+1)− D̂k+1(xNk+1)| =
∣∣Ef(X̃tk)− Ef(X̂xNk

tk
)
∣∣ ≤ E

∣∣f(X̃tk)− f(X̂xNk
tk

)
∣∣

9



where
f(x) = E

(
min

j=1,...,Nk+1

∣∣Yk(x)− xNk+1

j

∣∣2) = E
(

min
j=1,...,Nk+1

fj
(
Yk(x)

))
,

with fj
(
Yk(x)

)
=
∣∣Yk(x)− xNk+1

j

∣∣2. It follows that for every z ∈ Rd,

f(x) ≤ E
(

min
j=1,...,Nk+1

∣∣fj(Yk(x))− fj(Yk(z))
∣∣)+ E

(
min

j=1,...,Nk+1

fj
(
Yk(z)

))
.

or, in other words
f(x)− f(z) ≤ E

(
min

j=1,...,Nk+1

∣∣fj(Yk(x))− fj(Yk(z))
∣∣).

Using a symmetric reasoning gives, for every x, z ∈ Rd,

|f(x)− f(z)| ≤ E
(

min
j=1,...,Nk+1

∣∣fj(Yk(x))− fj(Yk(z))
∣∣).

Since for every a, b ∈ Rd, it holds the inequality |a|2 − |b|2 ≤ |a − b|(|a| + |b|), we have for every
j = 1, . . . , Nk+1,∣∣fj(Yk(x))− fj(Yk(z))

∣∣ ≤ |Yk(x)− Yk(z)|
(
|Yk(x)|+ |Yk(z)|+ 2|xNk+1

j |
)
.

Using Hölder’s inequality and the inequality (|a|+ |b|)2 ≤ 2(|a|2 + |b|2) yields, for every x, z ∈ Rd∣∣f(x)− f(z)
∣∣ ≤ (E|Yk(x)− Yk(z)|2

)1/2(
E|Yk(x)|2 + E|Yk(z)|2 + 4 min

j=1,...,Nk+1

|xNk+1

j |2
)1/2

.

Now, using the uniform Lipschitz assumption on b(t, x) and Assumption (27) leads to

E|Yk(x)− Yk(z)|2 = E
∣∣mk(x)−mk(z) +

(
Σk(x)− Σk(z)

)
Z
∣∣2

≤ K1

(
|x− z|2 + |b(t, x)− b(t, z)|2 + E|

(
Σk(x)− Σk(z)

)
Z|2
)

≤ K1

(
|x− z|2 + |Σk(x)− Σk(z)|2E|Z|2

)
≤ K1|x− z|2P2α(|x|, |z|)

for some positive and generic real constant K1 which may vary from line to line and where P2α is a poly-
nomial function of degree 2α of the form (26). Moreover, using the linear growth assumption (19) on the
coefficient b of the diffusion and assumption (27) we get, for every x ∈ Rd,

E|Yk(x)|2 = E|mk(x) + Σk(x)Z|2 ≤ 2(|mk(x)|2 + E|Σk(x)Z|2)

≤ 2
(
|mk(x)|2 + |Σk(x)|2E|Z|2

)
≤ K

(
|mk(x)|2 + |σ(tk, x)|2

)
≤ K(1 + |x|+ |x|2)

where K is a generic positive constant depending in particular on ∆.
On the other hand, since E

(
d(X̃tk+1

, xNk+1)2
)
→ 0 as Nk+1 → +∞, the following asymptotic density

property of (xNk+1) in the support of the distribution of X̃tk+1
holds :

∀ε > 0, ∀x∈ supp(PX̃tk+1
), ∃nε,x,k∈ N, ∀Nk+1 ≥ nε,x,k, B(x, ε) ∩ xNk+1 6= ∅. (29)

Otherwise, there exists x∈ supp(PX̃tk+1
), ε > 0 and a subsequence (xN

(p)
k+1)p≥1 so that ∀p ≥ 1, B(x, ε) ∩

xN
(p)
k+1 = ∅. Then, for every p ≥ 1,∥∥d(X̃tk+1

, xN
(p)
k+1)

∥∥
2
≥
∥∥d(X̃tk+1

, xN
(p)
k+1)1X̃tk+1

∈B(x,ε/2)

∥∥
2
≥ ε

2
PX̃tk+1

(B(x, ε/2))1/2 > 0
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which contradicts the fact that
∥∥d(X̃tk+1

, xNk+1)
∥∥

2
→ 0 as Nk+1 → +∞.

Then, it follows from (29) that there is C > 0 such that

min
j=1,...,Nk+1

|xNk+1

j | ≤ C.

Combining the previous results gives for every x, z ∈ Rd

|f(x)− f(z)| ≤ K|x− z|
(

(1 + |x|+ |z|+ |x|2 + |z|2)P2α(|x|, |z|)
)1/2

= K|x− z|Pβ(|x|, |z|)1/2,

for a positive real constantK and for Pβ , a polynomial function of degree β of the form (26). So, using once
again Hölder inequality yields

E
∣∣f(X̃tk)− f(X̂xNk

tk
)
∣∣ ≤ K

∥∥X̃tk − X̂
xNk
tk

∥∥
2

(
E
[
Pβ(|X̃tk |, |X̂

xNk
tk
|)
])1/2

.

Now, we know that for every r ∈ N, E|X̃tk |r < +∞. Moreover, since X̂xNk
tk

is stationary, it follows from
the previous statement and from inequality (16) that for every r ∈ N,

E|X̂xNk
tk
|r ≤ E|X̃tk |

r < +∞.

Hence
E
[
Pβ(|X̃tk |, |X̂

xNk
tk
|)
]
≤
∑
i,j≤2α

cij
(
E|X̃tk |

2i
)1/2(E|X̂xNk

tk
|2j
)1/2

< +∞.

Finally we have shown that

E
∣∣f(X̃tk)− f(X̂xNk

tk
)
∣∣ ≤ K

∥∥X̃tk − X̂
xNk
tk

∥∥
2
,

for some positive real constant K.

We focus now on the numerical computation of the quadratic optimal quantizers of the marginal random
variable X̃tk+1

given the probability distribution function of X̃tk . Such a task requires the use of some
algorithms like stochastic algorithms, Lloyd’s algorithms (both requiring the computation of the gradient of
the distortion function) or Newton’s algorithm (specially for the one-dimensional setting) which involves the
gradient and the hessian matrix of the distortion (we refer to [16] for more details).

3.3 How to get optimal quantizers of the marginals?

Owing to Proposition 2.2 and Equation (22)), the distortion Dk+1(xNk+1) is continuously differentiable as
a function of the Nk+1-quantizer xNk+1 (having pairwise distinct components) and its gradient is given by

∇Dk+1(xNk+1) =
(

2

∫
Cj(x

Nk+1 )
(x
Nk+1

j − y)P(X̃tk+1
∈ dy)

)
j=1,...,Nk+1

=
(

2

∫
Rd

∫
Cj(x

Nk+1 )
(x
Nk+1

j − y)P(Yk(x) ∈ dy)P(X̃tk ∈ dx)
)
j=1,...,Nk+1

where Yk(x) is the d-dimensional gaussian distribution with meanmk(x) and variance Σk(x). Keep in mind
that the quadratic optimal quantizer at level Nk+1 (that we still denote by xNk+1) of Xtk+1

is defined as

xNk+1 ∈ arg min{Dk+1(z), z ⊂ Rd, card(z) ≤ Nk+1}. (30)
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Remark 3.2. a) If xNk+1 is a quadratic optimal Nk+1-quantizer of X̃tk+1
and if X̂xNk+1

tk+1
denotes the quan-

tization of X̃tk+1
over the grid xNk+1 . Then xNk+1 is a stationary quantizer: it is such that

∇Dk+1(xNk+1) = 0.

Equivalently, we have for every j = 1, . . . , Nk+1,

x
Nk+1

j =

∫
Rd E

(
Ytk(x)1{Ytk (x)∈Cj(xNk+1 )}

)
P(X̃tk ∈ dx)∫

Rd P
(
Ytk(x) ∈ Cj(xNk+1)

)
P(X̃tk ∈ dx)

(31)

=
E
(
X̃tk+1

1{X̃tk+1
∈Cj(xNk+1 )}

)
P
(
X̃tk+1

∈ Cj(xNk+1))
,

where as previously Yk(x) is the d-dimensional gaussian distribution with mean mk(x) and variance Σk(x).
This also means that

E
(
X̃tk+1

∣∣X̂xNk+1

tk+1

)
= X̂xNk+1

tk+1
.

b) In the d-dimensional (d ≥ 2) setting, Equation (31) allows us to compute stationary quantizers for X̃tk+1

given the distribution of X̃tk using Lloyd’s type algorithms.

As mentioned in [16], the usual stochastic or Lloyd’s companion algorithms become quickly intractable
when the dimension d of the random vector X̃tk is greater or equal to 2 due to the fact that we have to
compute d-dimension integrals on Voronoi cells. Moreover, in our setting the complexity of the algorithms
will increase in hight dimension since we have to compute additional d-dimensional integrals. For these
reasons, we will restrict our analysis to the one-dimensional setting where we will use the Newton algorithm
to perform recursively quadratic optimal quantizers of the marginals X̃tk given the distribution of X0.

3.3.1 The Newton algorithm

Let ∇Dk+1(xNk+1) and ∇2Dk+1(xNk+1) denote respectively the gradient vector and the hessian matrix
of the distortion function. Using the Newton algorithm, a zero of the gradient may be computed via the
following recursive procedure starting from a given xNk+1,0 ∈ RNk+1 :

xNk+1,n+1 = xNk+1,n −
(
∇2Dk+1(xNk+1,n)

)−1∇Dk+1(xNk+1,n). (32)

So we have to compute the gradient and the inverse of the hessian of the distortion function. To simplify
notations set

x
Nk+1

j−1/2 =
x
Nk+1

j + x
Nk+1

j−1

2
, x

Nk+1

j+1/2 =
x
Nk+1

j + x
Nk+1

j+1

2
, with xNk+1

1/2 = −∞, xNk+1

Nk+1+1/2 = +∞,

and let

xk+1,j−(x) :=
x
Nk+1

j−1/2 −mk(x)

vk(x)
and xk+1,j+(x) :=

x
Nk+1

j+1/2 −mk(x)

vk(x)
,

where vk(x) = ∆σ2(tk, x). The components of the gradient can be computed after some elementary com-
putations and we have for every j = 1, . . . , Nk+1,

∂Dk+1(xNk+1)

∂x
Nk+1

j

=

∫
R

{(
x
Nk+1

j −mk(x)
)(

Γ0,1(xk+1,j+(x))− Γ0,1(xk+1,j−(x))
)

+ vk(x)
(
Φ0,1(xk+1,j+(x))− Φ0,1(xk+1,j−(x))

)}
P(X̃tk ∈ dx).
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The diagonal terms of the hessian matrix are given by:

∂2Dk+1(xNk+1)

∂2x
Nk+1

j

=

∫
R

[
Γ0,1(xk+1,j+(x))− Γ0,1(xk+1,j−(x))

− 1

4vk(x)
Φ0,1(xk+1,j+(x))(x

Nk+1

j+1 − x
Nk+1

j )

− 1

4vk(x)
Φ0,1(xk+1,j−(x))(x

Nk+1

j − xNk+1

j−1 )
]
P(X̃tk ∈ dx).

The sub-diagonal terms are

∂2Dk+1(xNk+1)

∂x
Nk+1

j ∂x
Nk+1

j−1

= −1

4

∫
R

1

vk(x)
(x
Nk+1

j − xNk+1

j−1 )Φ0,1(xk+1,j−(x))P(X̃tk ∈ dx)

and the super-diagonals are

∂2Dk+1(xNk+1)

∂x
Nk+1

j ∂x
Nk+1

j+1

= −1

4

∫
R

1

vk(x)
(x
Nk+1

j+1 − x
Nk+1

j )Φ0,1(xk+1,j+(x))P(X̃tk ∈ dx).

Note that for practical implementations we have to estimate the integral terms with respect to the dis-
tribution of X̃tk appearing in the gradient and the hessian of the distortion function. Since our procedure
is recursive and we have supposed that X̃tk has already been quantized and that the associated weights:
P(X̃tk ∈ Ci(x

Nk)), i = 1, . . . , Nk are accessible, we may estimate them by optimal quantization. The
Newton procedure (32) will then be modified as

x̂Nk+1,n+1 = x̂Nk+1,n −
(
∇2D̂k+1(x̂Nk+1,n)

)−1∇D̂k+1(x̂Nk+1,n) (33)

where the components of the modified gradient D̂k+1(x̂Nk+1) are given for every j = 1, . . . , Nk+1 by

∂D̂k+1(x̂Nk+1)

∂x̂
Nk+1

j

=

Nk∑
i=1

{(
x̂
Nk+1

j −mk(x̂
Nk
i )
)(

Γ0,1(x̂k+1,j+(x̂Nki ))− Γ0,1(x̂k+1,j−(x̂Nki ))
)

+ vk(x̂
Nk
i )
(
Φ0,1(x̂k+1,j+(x̂Nki ))− Φ0,1(x̂k+1,j−(x̂Nki ))

)}
P(X̃tk ∈ Ci(x̂

Nk)).

The diagonal terms of the hessian matrix∇2D̂k+1(x̂Nk+1,n) are given by:

∂2D̂k+1(x̂Nk+1)

∂2x̂
Nk+1

j

=

Nk∑
i=1

[
Γ0,1(x̂k+1,j+(x̂Nki ))− Γ0,1(x̂k+1,j−(x̂Nki ))

− 1

4vk(x̂
Nk
i )

Φ0,1(x̂k+1,j+(x̂Nki ))(x̂
Nk+1

j+1 − x̂
Nk+1

j )

− 1

4vk(x̂
Nk
i )

Φ0,1(x̂k+1,j−(x̂Nki ))(x̂
Nk+1

j − x̂Nk+1

j−1 )
]
P(X̃tk ∈ Ci(x̂

Nk))

and its sub-diagonal terms are

∂2D̂k+1(x̂Nk+1)

∂x̂
Nk+1

j ∂x̂
Nk+1

j−1

= −1

4

Nk∑
i=1

1

vk(x̂
Nk
i )

(x̂
Nk+1

j − x̂Nk+1

j−1 )Φ0,1(x̂k+1,j−(x̂Nki ))P(X̃tk ∈ Ci(x̂
Nk)).

The super-diagonals terms are

∂2D̂k+1(x̂Nk+1)

∂x̂
Nk+1

j ∂x̂
Nk+1

j+1

= −1

4

Nk∑
i=1

1

vk(x̂
Nk
i )

(x̂
Nk+1

j+1 − x̂
Nk+1

j )Φ0,1(x̂k+1,j+(x̂Nki ))P(X̃tk ∈ Ci(x̂
Nk)).
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The x̂Nk+1’s (and its companions x̂Nk+1

j−1 , x̂Nk+1

j+1 , . . . ) are the modified Nk+1-quantizers induced by the

approximation of the distribution of the X̃tk ’s by the distribution of the X̂xNk
tk

’s in the computation of the
gradient and the hessian matrix of the Newton algorithm steps.

A similar idea combining (vector or functional) optimal quantization with Newton-Raphson zero search
procedure is used in [7] in variance reduction context as an alternative and robust method to simulation
based recursive importance sampling procedure to estimate the optimal change of measure. Furthermore,
the convergence of the modified Newton algorithm to the optimal quantizer is shown in the framework of
[7] to be bounded by the quantization error. However, the tools used to show it do not apply directly to our
context and the investigation of the convergence of our modified Newton algorithm to an optimal quantizer
is a open question. To perform it, we have to show, among others, that the optimal quantizers of marginals
are unique. This seems to be not obvious to show even if we may reasonably think that the unicity holds.

Once we have access to the quadratic optimal quantizers xNk of the marginals X̃tk , for k = 0, . . . , n
(which are estimated using the Newton algorithm described previously) we have to compute the associated
weights P(X̃tk ∈ Cj(xNk)), j = 1 . . . , Nk, for k = 0, . . . , n. We show in the next result how to estimate
them.

Proposition 3.3. Let xNk+1 be the quadratic optimal quantizer of the marginal random variable X̃tk+1
.

Given the quadratic optimal quantizer xNk of X̃tk and the associated weights P(X̃tk ∈ Ci(x
Nk)), i =

1, . . . , Nk, the probability P(X̃tk+1
∈ Cj(xNk+1)) is approximated for every j = 1, . . . , Nk+1 by

P
(
X̃tk+1

∈ Cj(xNk+1)
)
≈

Nk∑
i=1

(
Γ0,1(xk+1,j+(xNki ))−

Γ0,1(xk+1,j−(xNki ))
)
P
(
X̃tk ∈ Ci(x

Nk)
)
. (34)

Proof. For every k ∈ {1, . . . , n− 1} and for every j = 1, . . . , Nk+1, we have

P
(
X̃tk+1

∈ Cj(xNk+1)
)

=

Nk∑
i=1

P
(
X̃tk+1

∈ Cj(xNk+1); X̃tk ∈ Ci(x
Nk)
)

(35)

and

P
(
X̃tk+1

∈ Cj(xNk+1); X̃tk ∈ Ci(x
Nk)
)
=P
(
X̃tk ≤ x

Nk+1

j+1/2; X̃tk ∈ Ci(x
Nk)
)

−P
(
X̃tk+1 ≤ x

Nk+1

j−1/2; X̃tk ∈ Ci(x
Nk)
)
. (36)

Now we have for every z ∈ R,

P
(
X̃tk+1

≤ z; X̃tk ∈ Ci(x
Nk)
)
=

∫ z

−∞

(∫
Ci(x

Nk )
P(X̃tk+1

∈ dx|X̃tk = y)P(X̃tk ∈ dy)
)

=

∫
Ci(x

Nk )
Γmk(y),vk(y)(z)P(X̃tk ∈ dy)

≈ Γ
mk(x

Nk
i ),vk(x

Nk
i )

(z)P
(
X̃tk ∈ Ci(x

Nk)
)
,

which gives the announced result replacing the quantity P
(
X̃tk+1

∈ Cj(xNk+1); X̃tk ∈ Ci(xNk)
)

in (35) by
its approximation in (36).

In the next section we propose an application of the proposed method to the pricing of European options
in a local volatility model.
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4 Pricing of European options in a local volatility model

4.1 The model

We consider a pseudo-CEV model (see e.g. [10]) where the dynamics of the stock price process is ruled by
the following SDE (under the risk neutral probability)

dXt = rXtdt+ ϑ
Xδ+1
t√

1 +X2
t

dWt, X0 = x0 (37)

for some δ ∈ (0, 1) and ϑ ∈ (0, ϑ] with ϑ > 0. The parameter r stands for the interest rate and σ(x) :=

ϑ xδ√
1+x2

corresponds to the local volatility function. This model becomes very close to the CEV model,
specially when the initial value of the stock process X0 is large enough. In this case the local volatility
σ(x) ≈ ϑxδ−1.

ϑ MC (105) MC (106) MQ

0.5 0.0022 0.0018 0.0017
CI [0.0017;0.0028] [0.0017;0.0019]

0.6 0.0113 0.0111 0.0110
CI [0.0101;0.0125] [0.0107;0.0115]

0.7 0.0377 0.0373 0.0370
CI [0.0353;0.0401] [0.0366;0.0381]

0.8 0.0883 0.0876 0.0871
CI [0.0843;0.0923] [0.0863;0.0886]

0.9 0.1696 0.1659 0.1649
CI [0.1635;0.1756] [0.1640;0.1678]

1.0 0.267 0.271 0.271
CI [0.259;0.275] [0.269;0.274]

2.0 2.423 2.433 2.426
CI [2.387;2.459] [2.422;2.445]

3.0 5.424 5.492 5.478
CI [5.424;5.512] [5.471;5.512]

4.0 8.893 8.806 8.808
CI [8.801;8.986] [8.777;8.835]

Table 1: (Pseudo-CEV model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations (followed
by the size of the MC in brackets) with associated confidence intervals (CI) and from the marginal quantization (MQ)
method. The parameters are: r = 0.15; δ = 0.5; n = 120; Nk = 400, ∀k = 1, . . . , n; T = 1; K = 100; X0 = 100;
and for varying values of ϑ.

We aim to compute the price of a European Put option with payoff (K − XT )+ = max(K − XT , 0),
where K corresponds to the strike of the option and T to its maturity. Then we have to approximate the
quantity

e−rTE(K −XT )+

where E stands for the expectation under the risk neutral probability. If the process (X̃tk)k denotes the
discrete Euler process at regular time discretization steps tk, with 0 = t0 < . . . < tn = T , associated to the
diffusion process (Xt)t≥0, this turns out to estimate

e−rTE(K − X̃T )+

by optimal quantization. We estimate this quantity by the marginal quantization method proposed in this
paper and compare the numerical results to those obtained from Monte Carlo simulations.
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K MC (105) MC (106) MC (107) MQ

100 08.89 08.81 08.81 08.81
CI [08.80;08.99] [08.78;08.84] [08.80;08.82]

105 10.61 10.60 10.59 10.59
CI [10.51;10.72] [10.57;10.63] [10.58;10.60]

110 12.53 12.57 12.57 12.57
CI [12.42;12.64] [12.53;12.60] [12.56;12.58]

115 14.72 14.74 14.75 14.75
CI [14.60;14.84] [14.70;14.78] [14.75;14.77]

120 17.18 17.10 17.13 17.12
CI [17.04;17.31] [17.06;17.15] [17.11;17.14]

125 19.64 19.69 19.67 19.67
CI [19.50;19.78] [19.64;19.73] [19.65;19.68]

130 22.41 22.32 22.40 22.40
CI [22.26;22.56] [22.32;22.41] [22.38;22.41]

Table 2: (Pseudo-CEV model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations (followed
by the size of the MC in brackets) with associated confidence intervals (CI) and from the marginal quantization (MQ)
method. The parameters are: r = 0.15; n = 120; Nk = 400, ∀k = 1, . . . , n; T = 1; ϑ = 4; X0 = 100; and for
varying values of K.

4.1.1 Numerical results

To deal with numerical examples we set δ = 0.5, X0 = 100, and choose the interest rate r = 0.15. We
discretize the price process using the Euler scheme with n = 120 (regular) discretization steps and quantize
the Euler marginal processes by our proposed method. We put all the marginal quantization grid sizes Nk

equals to 400 except for X̂x0
0 = X0 = 100 which grid size is N0 = 1. We estimate the price of the Put

option by

E
[(
K − X̂xNn

tn

)+]
=

Nn∑
i=1

(K − xNni )+ P
(
X̂xNn
tn = xNni

)
(38)

where tn = T , and where xNn = {xNn1 , . . . , xNnNn} is the optimal quantizer of size Nn computed from the
Newton algorithm (with 5 iterations) and where the associated weight are estimated from (34).

We compare the prices obtained from the marginal quantization (MQ) method with those obtained by
the Monte Carlo (MC) simulations even for various values of ϑ with a fixed strike K = 100 (see Table 1)
or for varying the values of the strike K with a fixed ϑ = 4 (see Table 2). For the Monte Carlo simulations
we set the sample size M equal to 105 and 106 for K = 100 and we set it equal to 105, 106 and 107 when
making varying the strike K.

Remark 4.1. (On the computation time) a) Remark that all the quantization grids xNk of sizes Nk = 400,
for every k = 1, . . . , n = 120, and there associated weights are obtained in about 1 minute from the Newton
algorithm with 5 iterations. Computations are performed using Scilab software on a CPU 2.7 GHz and 4 Go
memory computer.

b) With the same grid sizes as in a), all the optimal grids and the associated weights may be obtained quite
instantaneously from the Newton algorithm using the C (or C++) programming language. In this case we
can compute directly the inverse of the hessian matrix using the results in [21].

c) It is clear that once the grids and the associated weights are available the estimation of the price by MQ
method using the sum (38) is instantanuous.

Remark 4.2. (Initialization of the Newton algorithm) Let 0 = t0 < . . . < tn be the time discretization steps,
letX0 = x be the present value of the stock price process and suppose that the grid sizesNk are equal. Since
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the random variable X̃t1 ∼ N (m0(x); v2
0(x)), in order to compute the (optimal) N1-quantizer for X̃t1 we

initialize the algorithm to v0(x)zN1 + m0(x), where zN1 is the optimal N1-quantizer of the N (0; 1). Once
we get the optimal N1-quantization xN1 for X̃t1 and its associated weights, we initialize the algorithm to
xN1 to perform the optimal N2-quantizer for X̃t2 and its associated weights, . . . , and so on, until we get
the optimal Nn-quantizer for X̃tn and the associated weights. Notice that doing so we observe no failure of
convergence in all the considered examples.

Remark 4.3. We show in Figure 1 and Figure 2 two graphics where we depict in the abscissa axis the
optimal grids (of sizes Nk = 150) and in ordinate axis the corresponding weights. The dynamics of the
price process in Figure 1 is given by

dXt = rXtdt+ σXtdWt, X0 = 86.3

with r = 0.03, σ = 0.05 whereas its dynamics in Figure 2 is given by

dXt = rXtdt+ ϑ
Xδ+1
t√

1 +X2
t

dWt, X0 = 100

with r = 0.15, ϑ = 0.7, δ = 0.5. We observe that the forms of the distributions are close to the Gaussian
distribution as indicated by the Gaussian concentration bounds for some processes (see e.g. [11]). This
suggests that the Gaussian concentration results may exist for this model, at least for some choice of the
parameter δ.

Let us come back to the estimation of the Put price. Since the payoff function f(x) = (K − x)+ is
Lipschitz and since the quantization X̂xNn

tn is stationary, it follows from Zador Theorem that∣∣∣Ef(Xtn)− Ef(X̂xNn
tn )

∣∣ = O(N−1
n ).

Keeping in mind that the estimation error induced by the MC method satisfies

∣∣Ef(Xtn)− 1

M

M∑
i=1

f(Xi
tn)
∣∣∣ = O(M−1/2)

for a sample X1
tn , . . . , X

M
tn of size M , we deduce that the MQ method provides a precision as good as the

MC method when Nn ≈
√
M . For our numerical examples, we remark first that in all examples the prices

obtained by MQ stay in the confidence interval induced by the MC price estimates. On the other hand the
prices obtained by the MQ method are more precise (more specifically when ϑ = 4 and K increasing away
from 100) than those obtained by the MC method when the sample size M equals 105 or 106. Consequently,
the MQ method seems to be more efficient than the MC when the sample size is less than 106. However,
when increasing the sample size to M = 107 the two prices because closer (up to 10−2); despite everything
the confidence interval associated to the MC method stays large.

Remark 4.4. We remark that when the Monte Carlo sample sample size M = 107 it takes about 2 minutes
and 30 seconds to get a price using the C programming language on the same computer described previously.
Then, in this situation, it takes more time to obtain a price by MC method than carrying it out by MQ.
Furthermore, the MQ method would become much more fast when programming the Newton algorithm
using the C programming language instead of the Scilab software.

To strengthen the previous conclusions related to the local volatility model we compare the two methods
in the Black-Scholes framework where the stock price process evolves following the dynamics:

dXt = rXtdt+ σXtdWt, X0 = 100.

In this setting the true prices are available and will serve us as the support of comparison. The parameters are
chosen such that the model is close to the Pseudo-CEV model: r = 0.15 and σ ≈ ϑXδ−1

0 . Numerical results
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are printed in Tables 3 and Table 4 and heighten our conclusions on the Pseudo-CEV model. We notice that
in the Black-Scholes method, the estimated prices from the MQ method are close to the true prices (the best
absolute error is of order 10−5 for a volatility σ = 5% and the worse absolute error 2.10−2 is achieved in
high volatility: σ = 40%). This show the robustness of the MQ method even for reasonably high values of
the volatility.

σ MC (105) MC (106) MQ True price Abs. error

0.05 0.0015 0.00178 0.00176 0.00177 1.10−5

CI [0.0012;0.0019] [0.0017;0.0019]
0.06 0.0116 0.0109 0.0109 0.0112 3.10−4

CI [0.0104;0.0128] [0.0106;0.0113]
0.07 0.0365 0.0370 0.0369 0.0373 4.10−4

CI [0.0342;0.0387] [0.0363;0.0378]
0.08 0.0876 0.0876 0.0869 0.0875 6.10−4

CI [0.0836;0.0915] [0.0863;0.0888]
0.09 0.1666 0.1644 0.1647 0.1654 7.10−4

CI [0.1607;0.1724] [0.1622;0.1658]
0.10 0.269 0.271 0.271 0.272 1.10−3

CI [0.261;0.277] [0.271;0.273]
0.20 2.444 2.431 2.424 2.427 3.10−3

CI [2.410;2.479] [2.420;2.442]
0.30 5.455 5.469 5.470 5.474 4.10−3

CI [5.395;5.515] [5.450;5.549]
0.40 8.680 8.787 8.790 8.792 2.10−3

CI [8.598;8.763] [8.760;8.813]

Table 3: (Black-Scholes model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations (fol-
lowed by the size of the MC in brackets) with associated confidence intervals (CI) and from the marginal quantization
(MQ) method with the associated absolute error (Abs. error) w. r. t. the true price. The parameters are: r = 0.15;
n = 120; Nk = 400, ∀k = 1, . . . , n; T = 1; K = 100; X0 = 100; and for varying values of σ.
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K MC (105) MC (106) MQ True price Abs. error

100 8.680 8.787 8.790 8.792 2.10−3

CI [8.598;8.763] [8.760;8.813]
105 10.805 10.739 10.744 10.750 6.10−3

CI [10.71;10.90] [10.71;10.90]
110 12.86 12.89 12.90 12.91 1.10−2

CI [12.76;12.96] [12.86;12.93]
115 15.29 15.24 15.26 15.27 1.10−2

CI [15.18;15.40] [15.21;15.28]
120 17.66 17.81 17.79 17.81 1.10−2

CI [17.54;17.79] [17.78;17.85]
125 20.56 20.50 20.50 20.52 1.10−2

CI [20.43;20.69] [20.46;20.54]
130 23.28 23.37 23.37 23.39 2.10−2

CI [23.14;23.42] [23.34;23.43]

Table 4: (Black-Scholes model) Comparison of the Put prices obtained from Monte Carlo (MC) simulations (fol-
lowed by the size of the MC in brackets) with associated confidence intervals (CI) and from the marginal quantization
(MQ) method with the associated absolute error (Abs. error) w. r. t. the true price. The parameters are: r = 0.15;
n = 120; Nk = 400, ∀k = 1, . . . , n; T = 1; σ = 40%; X0 = 100; and for varying values of K.
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Figure 1: ("Black-Scholes model ") dXt = rXtdt + σXtdWt, X0 = 86.3, r = 0.03, σ = 0.05. Abscissa axis: the optimal
grids, X̂tk = xik, tk = k∆, ∆ = 0.02, k = 1, . . . , 25, i = 1, . . . , Nk. Ordinate axis: the associated weights, P(X̂tk = xik),
k = 1, . . . , 25, i = 1, . . . , Nk. X̂t1 is depicted in dots ’•’, X̂t25 is represented by the symbol ’*’, t1 = 0.02 and t25 = 0.5 and the
remaining in continuous line
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Figure 2: ("Pseudo-CEV model") dXt = rXtdt + ϑ(Xδ+1
t /(1 + X2

t )−1/2)dWt, X0 = 100, r = 0.15, ϑ = 0.7, δ = 0.5.
Abscissa axis: the optimal grids, X̂tk = xik, tk = k∆, ∆ = 0.02, k = 1, . . . , 25, i = 1, . . . , Nk. Ordinate axis: the associated
weights. X̂t1 is depicted in dots ’•’, X̂t25 is represented by the symbol ’*’, t1 = 0.02 and t25 = 0.5 and the remaining in
continuous line.
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